Ich arbeite mit SQL Server 2008 R2 und versuche, einen gleitenden Durchschnitt zu berechnen. Für jeden Datensatz meiner Ansicht möchte ich die Werte der 250 vorherigen Datensätze sammeln und dann den Durchschnitt für diese Selektion berechnen. Meine Ansichtsspalten sind wie folgt: TransactionID ist eindeutig. Für jede TransactionID. Ich möchte den Durchschnitt für Spaltenwert über 250 Datensätze berechnen. So für die TransactionID 300, sammeln Sie alle Werte aus früheren 250 Zeilen (Ansicht wird absteigend nach TransactionID sortiert) und dann in Spalte MovAvg das Ergebnis des Mittelwerts dieser Werte schreiben. Ich bin auf der Suche, um Daten in einer Reihe von Datensätzen zu sammeln. Gefragt Oktober 28 14 um 20: 58Derzeit haben wir diskutiert, wie man rollende Durchschnitte in Postgres schreiben. Durch die populäre Nachfrage zeigten Ihnen, wie das gleiche in MySQL und SQL Server zu tun. Nun zu decken, wie kommentieren laute Charts wie folgt: Mit einem 7-Tage vorherigen durchschnittlichen Zeile wie folgt: Die große Idee Unsere erste Grafik oben ist ziemlich laut und schwer zu nützlichen Informationen zu bekommen. Wir können es glätten, indem wir einen 7-Tage-Durchschnitt auf die zugrundeliegenden Daten zeichnen. Dies kann durch Fensterfunktionen, Self-Joins oder korrelierte Unterabfragen erfolgen - decken die ersten beiden ab. Nun beginnen mit einem vorangegangenen Durchschnitt, was bedeutet, dass der durchschnittliche Punkt am 7. des Monats der Durchschnitt der ersten sieben Tage ist. Optisch verschiebt sich die Spitze im Graphen nach rechts, da eine große Spitze über die nächsten sieben Tage gemittelt wird. Erstens eine Zwischenzahltabelle erstellen Wir wollen einen Durchschnittswert über die gesamten Anmeldungen für jeden Tag berechnen. Angenommen, wir haben eine typische Benutzer-Tabelle mit einer Zeile pro neuen Benutzer und einem Zeitstempel erstellt, können wir unsere aggregate unsere Signups-Tabelle wie folgt erstellen: In Postgres und SQL Server können Sie diese als CTE verwenden. In MySQL können Sie sie als temporäre Tabelle speichern. Postgres Rolling Average Glücklicherweise hat Postgres Fenster-Funktionen, die der einfachste Weg, um einen laufenden Durchschnitt zu berechnen sind. Diese Abfrage setzt voraus, dass die Daten keine Lücken aufweisen. Die Abfrage ist Mittelung über die letzten sieben Zeilen, nicht die letzten sieben Termine. Wenn Ihre Daten Lücken aufweisen, füllen Sie sie mit generateseries oder Beitritt gegen eine Tabelle mit dichten Datumszeilen. MySQL Rolling Average MySQL fehlt Fenster-Funktionen, aber wir können eine ähnliche Berechnung mit Self-Joins zu tun. Für jede Zeile in unserem Zählungstabelle verbinden wir jede Zeile, die innerhalb der letzten sieben Tage war, und nehmen den Durchschnitt. Diese Abfrage behandelt automatisch Datumslücken, da wir Zeilen innerhalb eines Datumsbereichs anstelle der vorhergehenden N Zeilen betrachten. SQL Server Rolling Average SQL Server verfügt über Fensterfunktionen, so dass die Berechnung der rollenden Durchschnitt kann entweder in der Postgres-Stil oder MySQL-Stil erfolgen. Zur Vereinfachung wurden die MySQL-Version mit einem Self-Join. Dies ist konzeptionell das gleiche wie in MySQL. Die einzigen Übersetzungen sind die dateadd Funktion und explizit benannt Gruppe nach Spalten. Andere Mittelwerte Wir konzentrierten uns auf den 7-tägigen nachlaufenden Durchschnitt in diesem Beitrag. Wenn wir uns den 7-Tage-Leitdurchschnitt anschauen wollten, so einfach wie die Daten in die andere Richtung sortieren. Postgres: Zeilen zwischen 3 vorherigen und 3 folgenden MySql: zwischen signups. date - 3 und signups. date 3 in MySQL SQL Server: zwischen dateadd (Tag, -3, signups. (Tag, 3, signups. date) Gleitender Durchschnitt in T-SQL Eine gängige Berechnung in der Trendanalyse ist der gleitende (oder rollende) Durchschnitt. Ein gleitender Durchschnitt ist der Durchschnitt der letzten 10 Zeilen. Der gleitende Durchschnitt zeigt eine glattere Kurve als die tatsächlichen Werte, mehr also mit einer längeren Periode für den gleitenden Durchschnitt, was es zu einem guten Werkzeug für die Trendanalyse macht. Dieser Blogpfosten zeigt, wie man den gleitenden Durchschnitt in T-SQL berechnet. Abhängig von der Version von SQL Server werden unterschiedliche Methoden verwendet. Die nachstehende Tabelle zeigt den Glättungseffekt (rote Linie) mit einem 200 Tage gleitenden Durchschnitt. Die Aktienkurse sind die blaue Linie. Der langfristige Trend ist deutlich sichtbar. T-SQL Moving Avergage 200 Tage Die folgende Demonstration benötigt die TAdb-Datenbank, die mit dem hier befindlichen Skript erstellt werden kann. Im nächsten Beispiel wird ein gleitender Durchschnitt für die letzten 20 Tage berechnet. Abhängig von der Version von SQL Server gibt es eine andere Methode, um die Berechnung durchzuführen. Und, wie wir später sehen werden, haben die neueren Versionen von SQL Server Funktionen, die eine viel effektivere Berechnung ermöglichen. SQL Server 2012 und höher Moving Average Diese Version verwendet eine aggregierte Fensterfunktion. Was ist neu in SQL 2012 ist die Möglichkeit, die Größe des Fensters zu beschränken, indem Sie angeben, wie viele Zeilen vor dem Fenster enthalten sollten: Zeilen vorangegangen ist 19, weil wir die aktuelle Zeile auch in die Berechnung enthalten. Wie Sie sehen können, ist die Berechnung der gleitenden Durchschnitt in SQL Server 2012 ziemlich einfach. Die Abbildung unten zeigt das Fensterprinzip. Die aktuelle Zeile ist mit gelb markiert. Das Fenster ist blau markiert. Der gleitende Durchschnitt ist einfach der Durchschnitt von QuoteClose in den blauen Linien: T-SQL Moving Average Fenster. Die Ergebnisse der Berechnungen in älteren Versionen von SQL Server sind identisch, so dass sie nicht erneut angezeigt werden. SQL Server 2005 8211 2008R2 Moving Average Diese Version verwendet einen gemeinsamen Tabellenausdruck. Der CTE wird referenziert, um die letzten 20 Zeilen für jede Zeile zu erhalten: Moving Average vor SQL Server 2005 Die pre 2005-Version wird eine linke äußere Verknüpfung zu der gleichen Tabelle verwenden, um die letzten 20 Zeilen zu erhalten. Die äußere Tabelle kann gesagt werden, um das Fenster, das wir wollen, um einen Durchschnitt zu berechnen: Performance-Vergleich Wenn wir die drei verschiedenen Methoden gleichzeitig und überprüfen Sie die resultierende Ausführung Plan, gibt es einen dramatischen Unterschied in der Leistung zwischen den Methoden: Vergleich von drei Verschiedene Methoden, um den gleitenden Durchschnitt zu berechnen Wie Sie sehen können, macht die Verbesserung der Fensterfunktion in SQL 2012 einen großen Unterschied in der Leistung. Wie bereits am Anfang dieses Beitrags erwähnt, werden gleitende Durchschnittswerte als Trends verwendet. Ein gemeinsamer Ansatz besteht darin, Bewegungsdurchschnitte verschiedener Längen zu kombinieren, um Veränderungen in der kurz-, mittel - und langfristigen Entwicklung zu erkennen. Von besonderem Interesse sind die Übergänge der Trendlinien. Zum Beispiel, wenn sich der kurze Trend über den langen oder mittleren Trend bewegt, kann dieser als Kaufsignal in der technischen Analyse interpretiert werden. Und wenn sich der kurze Trend unter einer längeren Trendlinie bewegt, kann dies als Verkaufssignal interpretiert werden. Die folgende Tabelle zeigt Quotes, Ma20, Ma50 und Ma200. T-SQL Ma20, Ma50, Ma200 kaufen und verkaufen Signale. Dieser Blog-Beitrag ist Teil einer Serie über technische Analyse, TA, in SQL Server. Siehe die anderen Beiträge hier. Geschrieben von Tomas Lind
No comments:
Post a Comment